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A b s  t r s c  t 

This paper is coneerne2 with the investigation of the effect 

of rcicrostructure i n  the solution of sevefal  problem of wave propa- 

cpticr!. 

space and their ref lect ions from a stress free f l a t  surface are 

Sstudiec',. 

wave5 can e x i s t  traveling a t  four d i s t i n c t  speeds, three of which 

disappear below a c r i t i c a l  frequency dependent upon 'the character 

of the medium. fieflection l a w s  and amplitude r a t io s  are presented 

f o r  three spec i f ic  problems. 

The prcl-etion of plane waves i n  a micropolar e l a s t i c  half- 

It has been foun2 +ht i n  a micropolor e l a s t i c  so l id  s i x  
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INTRODUCTION 

"he c lass ica l  e l a e t i c i t y  theory- is believed t o  be inadequate fo r  

the treatment of deformations and motions of a material possessing &ran- 

u l a r  structure.  In p a r t i c u l a r ,  the a f f e c t  of granular, or microstructure, 

b e c m s  important i n  transmitting waves of mall wavelength andlor high - 
frequency. When the wavelength is cmparable w i t h  the average grain size 

the motion of the grains m u s t  be taken into account. 

new ty-pes of waves not encountered in the c lass ica l  theory. 

This introduces 

The present paper is an attempt to  s t u d y  the e f fec t  of microstructure 

i n  the solution of' several  problems concerning wave propagations. 

thie end w e  w e  the theory of micropolar e l a s t i c i t y  developed i n  a series 

of papers by Eringen and his coworkers [l] to [3].  

To 

The basic difference between the theory of micropolar e l a s t i c i t y  

and that of c lass ica l  e l a s t i c i t y  is the introduction of an independent 

microrotation vector. 

be obtained from a knowledge of the three crpnponents of the displacement 

vector. I n  micropolar e l a s t i c i ty ,  i n  addition, we must have knowlew 

of the three camponents of the microrotation vec tor .  

of the general theory show that such solids can support couple streseee 

and may be affected by the spin inertia. 

In c lass ica l  e l a e t i c i t y  all other quantit ies can 

'Ihe developllent 

In Chapter 1 we present a xesuae of the basic equations of micro- 

polar  e l a s t i c i t y  necessary for the analyeis of wlive motion. 

derivation aad diacussian of these equations were given in 1964 by 

Eringen and Suhubl [l], [2]. 

mlcmpohr elasticity and studied various qussldone on stability and 

uniqueness of the solutions of s t a t i c  and a;vnSmic boundary value problem. 

A ccmrplete 

Recently Eringen [3] has lPcapitulated the 

. 
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Using tbis theory ne detexmlne the t y p s  and speeds of plane  waves in an 

. infinite micropolar e l a s t i c  solid.  New dispersive microrotational waves 

are found In addition t o  those similar to the c la s s i ca l  ones. The die- 

pemion relatione - discussed i n  detail resulting i n  several inequalit ies 

among the consti tutive coefficients. 

for several  of these new waves below vhlch .they degenerate t o  a vibratory 

motion of the medium. 

We also find a cutoff frequency 

Chapter 2 is devoted to a discuesian of re f lec t ion  of plane, longi- 

tudinal  dieplacement waves frosn a f la t  free surface. 

and amplitude ratios are obtained. 

i n  detai l  and a few typical  curves are sketched. 

program is carried out f o r  the reflection of coupled transverse shear 

and rnicroroUitiona.3. waves and i n  Chapter 4 f o r  those of longitudinal 

m i c r o r o t a t i o ~ ~ ~ ~  wave&. 

limiting case when the incident waves are grazing parallel t o  the boundary. 

Reflection angles 

Certain special case8 are studied 

In Chapter 3 the same 

chapters 2 and 4 -0 contain an -is of the 

. The f i r s t  l imiting analysis in Chapter 2 is similar to  that presented by 

Coodier and Bishop [ 4 ]  for c lass ica l  e l a s t i c  waves (see  also Ewing, Jar- 

detskcy and Press [ 51). An experimental ver i f icat ion of the f3ndings of 

Goodier and Bishop has not been made though I(bLsky 161 states that the 

generation of a transverse wave when a longitudinal wave ~il118 parallel 

t o  a free surface has been observed experimentally. 

we also use a limiting analysis due to F. C. Roesler [7 ]  the results of 

which in  the c lass ica l  case have been verif ied experimentally by D. G. 

Chrietie [ 81. 

In Chapters 2 and 4 

The content of Chapters 2, 3 and 4 is believed to be new. 
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This chapter is concerned with the discussion of the propagation 

of plane waves in a microelastic sol id .  

theory of micropolar e l a s t i c i t y  (21, 131. 
are also to be found i n  an independent paper by Pal'mov [9] and one by 

Mindlin [lo]. 

first of these papely;, it differs  frm the second and, i n  f ac t ,  some of 

the results are i n  d i r ec t  contradiction. 

The analysis is based on Eringen's 

k i e f  accounts on the subject  

While the present work has certein similarities to the 

Basic Equations 

mingen's theory of micropolar e l a s t i c i t y  is based upon t f ie  follow- 

ing  equations: 

Balance of momentum: 

Balance of manent of momentum: 

m + E  t + p(lk - j gk) = 0 
.. 

rk , r  kLr Ir 

Conservation of energy: 

p i  - t ( v  - €  v ) + % , v  
kl L,k htr r 1,k 

C o n s t i t u t i v e  equations: 
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where A , p , h‘ , a , f3 and 7 are the material nociuli and 

t ii stress tensor, B couple stress tensor 

p =: densi ty ,  
Id 

Io body force 

S nicrorotation vector 
f 4  

% 5 displacement vector, yk 
I body couple, ,j E microinertia k 
E internal eiiergy density, Vk E p J Vk * i;: 

132 -€ 321 
= - €  

123 ‘231 = €312 . E ab permutation symbol ( E  
kern 

= -E E l a n d a l l  other E 0 0 )  
213 Urn 

C Kronecker delta ( 0 1 when k = 8 and zero otherwise) 
%E 

\ (k = w , 3 )  or (x x p 1 
Here we employ rec&ngular coordinates 

x 

A l s o  indices following 8 curnma indicate partial differentiazion and a 

superposed dot indicates the time rate, e .g . ,  

y , x3 i i) and the usual sunmation convention on’repeatec! indices. 
2 

Eringen [3]  has shown that the following inequalities among’the material 

moduli are necessary and sufficient for the internal energy to be non- 

negative 

Upon substitutfsg (1.4) and (1.5) into (1.1) and (1.2)y respectively, 

we obtain the f i e l d  equations of the theory 
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where we have also s e t  = k = 0 . 
The boundary conditions on tmctions and couples a t  a point of the 

surface 3 of the body v+ 3 are expressed as 

%Lnk = I 

where t and m are respectively the surface tractions and surface 

couples prescribed on 3" and n is the exterior normal to 3 . 
W i t h  the use of (1.4) and (1.5) these read 

1 a 

k 

It is cowenient to express the f i e l d  equations (1.8) and (1.9) in 

vector form 

2 2 2  2 +c)v(v*pJ-(c + c ) v x ( v x y ) + c  v x q ,  - jf (1.12) 
.c (c; 3 2 3  3 

where 

2 K 

1 P 2 P 3 P 

2 

c2 0 u c2 c E c = -  

c4 PJ 5 P J  

2 

0 J PJ 
a+B w * @ - * -  c3 K 

m -  7 c2 
(1.14) 
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We now decmpose the vectors 1p and 9 into scalar and vector 

c 

pc+--^z:ti& : D E m  

6 

cp v r p + v x p  
4 

Introduction of these potentials into equations (1.12) and (1.13) yields 

.. 2 
3 

- c  V x & + ~ ] =  0 

2 .. 2 2 2 -  2 -  
G[(c4 + c 5 )  v cp - a* cp - 61 - v x [ c4  v x (v  x 2) 

I 

2 2 
0 

- b J  v x u + 2 u o  2.3.: 0 (1.18) 

These equations =ray be expressed as 

where the scalar potential a and the vector potential & are defined 

as tbe appropriate quantities in the brackets. In particular, we can 

mite, [u, P* 521, 

whelp E is definedby 



. 
General !kchn010gy Corporation 

7 

r 

In the pmsent case B 0 , hence = 0 60 that 

Thus the necessary and sufficient conditions that equations (1.17) and 

(1.18) be satisfied are that each qyantity enclosed in brackets be iden- 

t ica l ly  zero. Hence 

- 

L. 2 2 2 -  
1 3  

(c  + c ) 3  u = u 

.. ( c ; + c 2 ) a , + c  2 0 x 2  = Q 
3 3 

.. 2 2  2 2 v g - 2 w ( + + w  V X J L  = 2 - =4 0 

It may be observed that equations (1.20) and (1.21) are uncoupled for the 

scalar potentials and (p while equations (1.22) and (1.23) consti- 

tute a coupled system for the detelmiaation of the vector potentials u 
and 2. 

Plane Waves in In f in i t e  Medium --- 
. Plane waves advancing in the positive direction of the unit vector 

y may be elcpressed as 

where a b are cmplex constants, & , a may be complex constant 
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vectors, v is the phase velocity, k is the wave nuriber and is the 

posit ion vector. ‘laus 

i n  which 1 is the wavelength and & , J , & are the unit Cartesian 

base vectors. 

Substi tution of (1.24) in to  (1.20) y i e l d s  

2 2 2  -1 
1 1 3  

v a c + c  = ( A + 2 V + K ) P  

Hence, if  v is t o  be real we must have 
1 

h + 2 p + U  - > 0 

F’rm equation (1.15) w e  obtain for the displacement vector 

(1.26) 

which is i n  the direct ion of propagation. Hence these uaves represent 

the counterpart of the classical d i l a t a t iona l  waves. For K = 3 .. (1.25) 
gives the c l a s s i ca l  wave speed. Since the displacemat  is in-the dime- 

t ion  of propagation for the waves traveling a t  speed v, we shaL W i g -  
A 

nate them longitudinal displacement waves. - 
Turhing our a t ten t ion  nar to equation (1.21), for th6 speed of 

propagation v , we obtain 
2 

Introducing the angular frequency w by 
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equation (1.27) may be written as 

Equation (1.29) s h m  that the speed of propagation v depends on 
2 

the frequency w . Eence these mves are dispersive. I n  par t icular  
2 

if w > Ji? wo end 
2 

then v is real and the microrotation waves exist. The microrotation 

vector cp is given by 
2 

- 

This expmssion also shows that the microrotation vector points in the 

direction of propagation. 

c a l  e las t i c i ty  theory and to distinguish it fran other microrotstional 

This is a new wave not encountered in class$- 

waves we shall c a l l  it a longitudinal microrotational wave. - 
If w = J 2  w = w the wave  ha^ infinite velocity v 'as given 

2 o c  2 
by equation (1.29) and the wave does not exist. 

2 
When w <%r2 o equation (1.29) shows that the speed v2 is . 

2 0 
negative and v is pure imaginary, tha t  is ,  

2 

v = t iIvJ 
2 
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Hence, it appears as i f  $2 w 0 acts  as 8 cutoff frequency, below which 

the wave vanishes. 

w - > 0 equation (1.28) show that 

Carrying the investigation a l i t t l e  further, since 

w 
2 

W 
2 k = -  
2 

V 2 

where the upper and lower signs of (1.33) correspond to the upper and 

lower si- of (1.32) respectively. 

frm (1.24) we may w r i t e  

Considering f i r s t  the upper si*, 

I 

This represents a harmonic vibration of' t h e  medium the ryLgnitude of 

which grows exponentially w i t h  ciistance and therefore it is unsatisfac- 

tory. 

I 

For the lower signs i n  equations (1.32) and (1 .33)  we obtain 

which aecays exponentially w i t h  distance. 

able motion. For w << 1 
2 

This is 8 p r n i c a l l y  accept- 

I 

2 W 

T;;T=- 5 

0 
2 W  

0 
2 W  

2 W 

T;;T=- 5 

and equation (1.9) approaches a f ini te  l i m i t  as w 2 3 0 . In psr t icular ,  

(p and hence L cp becomes independent of time and reduces to a static 

microrotation. 

For the investigation of vector waves we substi tute (1.24) into (1.22) 
l 

and (1.23). Hence 

a & + i a  B y x a  - 0 
A (1.35) 
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I -  
where 

2 
3 

, a = k c  
2 2  2 2 

B 
01 = k (V - c2 - c ~ )  

A 

(1.36) 

(1.37) 

Forming the scalar products of equations (1.35) and (1.36) w i t h  y 

it  becomes apparent that 

provicred a f 0 , ag # 0 , 8, 
& and B l i e  in a carrrnon plane whose unit noma1 is y . Solving for 

0 and B f 0 . Hence both vectors 
A B 

from equation (1.36) we get ' 

0 ,  
= - i - - y x &  

n 

bB 
(1.39) 

from which we conclude that  the three vectors y , & ana 8 ELR rnutudly 

perpendicular. 

Equation (1.39) shows t h a t  if 4 P' 0 then I!J 0 making both 

and & vanish. Thus there would be no coupled waves propae ted .  A 

similar analysis from equation (1.55) holds for 

waves cannot vanish unless they do so simultaneously, hence they are 

S 0 . These two 

truly coupled waves. 

If Q , and hence 2 , are non-zero, the second terms of (1.15)1 

and (1.16) will show that and cp are n o m 1  to esch other and to 

the direction of propagation y . Hence they are transverse vayes. We 

cal l  the wave associated w i t h  Q 8 tsansverse displacement wave and tfke 

one associa-d w i t h  &J a transverse microrotational wave. - 'Ihe transverse 

.c 1 



I -  

~ 

General l k c h m l o ~  Corporation i 
i 
1 

I2 

displacement vave is similar to the c l s s s i c s l  8hxs.r wave and will reduce to 

it in the limit of classical  elasticity. The appearance of a transveree 

I 

I 
microrotatiod wave coupled w i t h  it is new. I 

I 
(1.39) into (1.35) w i t h  the use of (1.9) for & Q gives I 

The velocitleer of propagation of these waves are determined by carrying 

where 

2 
0 

2 w  
a = (l--) 

2 w 
2 2 

0 2 0 
2 

w 2w 
2 

b = - [ C E  + c2(1 - -) + c (1 - -11 
w 2 3 u  

2 2  2 
a ( v )  + b v  + c  = 0 .( 1.40) 

(1.41) 

2 2  2 
c = c ( c  + e )  

4 2  3 

Equation (1.40) is a quadratic eqyation in v2 which yields two dist inct  

speeds of propagation. These waves are dispersive. In the c lass ica l  

case the roots of (1.40) are v = 2 0 , v = tm of which the last one 

is the speed of shear v8ve8 given in ths c lass ica l  theory. In order to 

have two real velocities both roots of equation (1.40) for v m u s t  be 

positive.  

2 

 he positive mote of equation (1.40) are 

v = [-I. 2a (’b +4KGjI1’* 
3 

1/2 1 
v4 = [- 28 (-b -Jb2 - 4ac)l 

By use of (1.41) we can eventually obtain 

(1.42) 

(1.43) 
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which show that the d i 6 C r i ~ & ~ % n t  is greater th8n or  equal to zero since 

K > O  and y > o  

t h a t i f  G ) > W  a 

a < 0 . Since the 

- - 
C 

v is real f o r  w 
3 

by (1.7) and w - > W . 
> O , I f  w = o  then a = O , a n d f i . n a U y i f  w < w  , 
numerator of Y is always posit ive we conclude that 

> w  , i n f in i t e  f o r  w = w , and imaginary w < w . 

Fram equation (1.41)1 we see 

C C 

3 

C C C 

The detailed analysis i n  the next section shows that v remains real 

and f i n i t e  for a l l  w . Hence, t h i e  c r i t i c a l  frequency w - d 2  o is 

again a cutoff fmquency f o r  one o f  the wave speeds. 

4 
r 

C 0 

In sunmary of t h i s  section, we find that there are s i x  waves travel- 

ing a t  four d i s t inc t  speed8 i n  an infinite micropolar e la s t i c  solid: 

(a) A longitu6inal displacement wave a t  speed v similar t o  the ala- 1 - 
t a t iona l  wave of the c lass ica l  theory; (b) a longitudinal microrotation 

wave traveling with a speed v9 with its microrotation vector i n  the - L 

direct ion of propagation. 

i f  the frequency w 

w =J2 oo 

This motion exists as a progressive wave o w d  

is larger than the c r i t i c a l  c i r c u l a r  frequency 

&law this frequency the mve degenerates into sinusoidal 
C 

vibrations decaying w i t h  distance frcxn the source. 

four are two sets of waves cmpoaed of tvo wave6 each. 

a t  speed v and the other at speed Y 

verse displacenrent wave coupled vith a transverse microrotational wave. 

An analysis similar to that for the longitudinal microrotation wave shows 

( c )  The remaining 

One s e t  propegates 

EBch se t -cons is t s  of a trans- - 3 4 -  
- - - 

* 
An investigationwasmadeallowing w 2 < 0  and w imaginary. Aophysi- 

caUy acceptable progmssive wave solutions w e r e  obtained. This is not 
surprising, however, since the basic theory does not contain a m e c h a n i s m  
for internal f r ic t ion .  
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that the set of' coupled uaves traveling at  speed v 

w ;. cieSeur~aiiilg iaLa a ii:i?'ca;ice deca3h.g sfii-srfc'al ;-iIzmti~z 

otherwise. 

(1.42) and (1.43) is carried out in the next section. 

exist only if 
3 

C 

A more detailed analysis of the dispereion relations (l.29), 

Analysis - of Dispersion Relations 

In this sect ion we study the dependence of wave speeds on frequency. 

The wave speed v is constant, thus we only need to study the characters 

of v , and then v and v 
1 

4 .  2 3 
According to equation (1.29) we have 

2 
2 

V %  

A sketch of 

is   imply a 

88 S h o M  

For 

2 
V 

in 

(1.45) 

2 (1.45) is shown i n  Fig .  1.1. The sketch of v- versuB w 

reflection of the figure about the line x 

Figure 1.2 since x and w m e  mutually 

the wave velocities v and v we have 3 4 
- 2 

C 
1 2 2 2  2 3  

I + c + c - (c* + -)x '3,4 2 0 - x )  (=2 3 4 2 

z 
= 1 ( w  = w =J2 "0) 

C 

lpciprocal. 

I 2 
2 2 2  2 2  

3 4  + - J[(c4-c2-cJ) + ( c 2 2 ) x f ? +  2 2  2c c x)  (1.46) 

w h e r e  the upper sign refers to v2 and the lower one to v2 in the above 3 4 
and in vbat follows. 

wavelength values 

Ietting x -t 0 (o + 0 )  (1.46) yields the short 

2 2  
= c + c  

2 2 2 
3 - c4 v4 2 3  * 

For x + Q (w + 0) the long vavelength U t a  are obtained . 
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2 

/ I  

Figure 1.1. 
2 

.Sketch of v versus x . 
2 

I 

w +uJ i W P W  C 

I 
I 
I 
I 
I 

2 
2 

Figure 1.2. Sketch of Y versus w . 
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L 2 a 2 1 2  
Y, = 0 7 v4 = c3 + r, c, 

6 2 

If we allow W = W then x = 1 and tbe denaninator of eqmtion 
C 

c ’ 5 = -= *Or 
(1.46) vanishes. This leads to v = f o r  w > w 

w < u  and 
3 

C 

2 
2 2 2 2 2 2)-*l lin v4 - c (c  + c ) (c + 4 2  3 4  2 

x - b l  

(1.49) 

2 2 2  We see tbat if c = 0 then v = c - E ,  the c lsss ica l  speed, inall 

thne cases. If c = 0 also,  then $ = 0 and we have the complete 

cLassical situation. 

3 2  4 2 P  

4 3 

Comparing our knowledge of v 2 and Y 2 at th is  point ve see that 

arises as to whether or not they intersect. If v4 L (GO) > v 2 (a) then 

3 4 2 at w = w v 

finite values In the l i m i t  a8 w tends to infinity. Hence, the question 

I s  infinite and ? is finite and.they both approach 
c 3  4 

3 
the curves intersect, Otbend8e they do not. Assuming the curves inter- 

sec t  then there exists  an w euch that v ~ = v4 . Using equations (1.42) 
and (1.43) we find that we m u s t  have 

cue8ion of equation (1.44) we concluded that 

2 2  

b2 - 4ac = 0 . In an earlier dis- 

b2 - 4 a c  - > 0 e J 1 w  

the equal B i g n  being in the Uit 88 w -0  . 
diction and the curves & not interrrect for a q  finite w . 

Hence we reach a; contra- 

Tbey my, 
however, approach the same l i m i t  88 @.+a Thio meam Y 2 (a) = v 2 (a) 

3 4 
2 2 2 2 2  

or c = c + c . In general then v (w) > y,(w) , except possibly at 

infinitywfitre the equal 8ign holds, hence v > v for w > w which 

lllgans 

4 2 3  3 2 2  
C 3 -  4 
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2 2  > c + c  2 

= 4 - 2  3 

Using equations (1.14) we obtain an additional inequality among the con- 

st i tut ive coefficients 

(1.51) Y - > p + K  
J -  

2 2 

We can continue this -is by taklng the limits of the deriva- 

which m u s t  be satiefied to have a consistent solution for v and v 3 4 -  

2 2 
3 b tives of v and v etc. The results of all these canputstions are 

incorporated i n  Figure 1.3.  
2 
4 Next ve investigate the relative msgnitudes of v at u 0 0 , , 

u = u ,. and w = 0 . Ewtim (1.47)2 and show -d2ately 
i; 

thnt If c2 + 0 
3 

Likewise, ccanperison of equa-ions (1.47) and (1.49) shows t h t  
2 

2 2 
k 4 c  

To can- v (0) and v ( w  ) wemuet campan eqGtions (1.48) and 

or (1.49). 

V&O) 5 vk(wc) . 
2 1 2  2 2  

FroDll the inequality (1.3) we see that c2 + cJ 5 c4 
2 2 Consequently we conclude that 

I 

2 2 2 
4 - 4 c  - 4 v ( 0 )  < v ( w  ) < v (a) 

and show tbeae result0 in Figure 1.3. 

canparison of equations (1.25) and (1.47) vith t ~ ~ e  a id  or (1.14) 
2 

shows tbat 
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+ 
ucu 
0 

8 
U 
3 

3 

0 
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(1.55) 

2 2 
1 1 3 

A similar comparison of (1.25) and (1.47) for v and v is inconclu- 

sive.  If 

> h + Z ! p + K  
J -  

then 

2 2 
3 -  1 

v > 9 w > oc 

(1.56) 

(1.57) 

2 2 2 
3 1 

is constant there exists a fre- 

However, if‘ the opposite is true then 

increases for decreasing w and v: 

v (a) < v , and since v,(w) 

I 2 2  
C 3 1  

quency w , say w* , where w < w* < Q) such t ha t  v = v . That is, 

w* 

sign and solving for w . Then we conclude that 

is found by equating equation (1.25) to equation (1.b6) with the upper . 

2 2 
1 3 -  

v > v  w < w < w *  - 
C 

b) > w* 
2 2 
1 -  3 - v > v  

Since the reflection problem considered in the later chapters do 

not e i w r l t l y  involve longitudinal displacement w4-s and longitu- 

dinal microrotation warn a ccinpwi~<w of speeds v and v is not 

nectsmry . 1 2 

Call- 
2 

and v 
2 2  
’ v3 4 .  We now txamiac the relative m3gnltudes of v2 

parieon of Figures 1.2 and 1.3 show at infinity 
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and hence v2 w i l l  be greater than v 2 for u > w if v 2 2  > v st 
2 3 C 2 3  2/ 2 r&i w - ? w  v3i v2 C 

w t w . To thls end we mtennine the l i m i t  of 
C 

(x  + 1) . A t  x = 1 this ratio simplifies to 

2 
Y 

2 1 2  2 2-1 
+ - c )(c4 + cs) - - = ( = 4  2 
2 3  

3 

2 
Y 

(1.60) 

2 2  2 
2 3  5 2 3  

Nov if we are to brrve v > v then c >'  c2 fram which (1.14) shaws 

t h a t  the inequality 

1 

2 
c r + p  > - j K  ( 1.61) 

among the constitutive coefficients must be s a t i s f i e d .  If the opposite 

of (1.61) is s a t i s f i e d  then there exists  a frequency ww such that 

vz(w)(() = v2(W") when w < w- < Q . In this case v 2 2  > v when 3 -  2 2 2c 3 
w < u < u w  and v < v  when w * * < w .  - 3 -  2 - C 

Briefly, if inequality (1.61) is sat i s f ied  then 

w < w  
2 2 2 v > v  > v  
2 3 4 C 

holds. If the opposite i n e q d i t y  is satisfied there exists w- such 

that either 

2 2 
3 -  2 -  4 v > v 2 > v  

or 

2 2 2 v > v  > v  
2 -  3 -  4 

( 1.62) 

We bave cavered all poaeiblc case8 vithout definite knowledge of the 
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relative valuee of the constitutive coefficients.  These relations am 

v i t a l  to the analyses in the m i n i n g  chapters. 
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I 

Fondation 

This chapter is devoted to the study of re f lec t ion  of a longitudinal 

displacement plane wave a t  8 stmsa Pree plane surface of infinite length. 

The free surface is taken to be the x,y-plaae w i t h  posit ive z pointing 

i n t o  the medium, Figure 2.1. 

direction of a u n i t  vector y is reflected a t  the z L: 0 plane. To 

s a t i s f y  the boundary conditions on tractions and couples a t  the boundary 

An incident p l a n e  wave advancing in the 

1’ 

it is necessary to postulate the existence of reflected waves in three 

d i s t i n c t  directions, % , +, and y4 . These an (1) a longitudinal 
d i s p h u n e n t  wave having speed v in the direction y2 a t a n a n & l e  

1 
8 (2) at  speed v a transverse d i spkemen t  wave coupled with a 

transverse microrotational wave in the direction of yt , and (3) a simi- 

direction at speed v if w > w . lar se t  of cowled waves in  the 

If w < u th i s  laet set of waves degenerates to  a vibration of the 

medium a6 dlscuesed in Chapter 1, thus we 8 8 8 1 ~ ~  w > w in tbe remainder 

of the chapter. 

2 ’  4 

5 3 C 

C 

C 

If the x = 0 plane is so selected as t o  mabe the incident U- 

placement vector remain i n  the y, z plane then the ref lected wave6 a t  

the fme surface z - 0 will a280 have their displacement fields in 

the same plane. 

su f f i c i en t  for the underetanding of the three-dimensional problem. The 

nonvaniehing components of the potentials are given by 

Thus the study of the problem in  two-dimemions is 
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Fi=we 2.1. Ref lec t ion  of a longi tudinal  displacement wave. 

X 

/ = 

I z  

Figure 2.2. Boundary conditions on surface z = 0 . 
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- 
u -  a 

% =  

% =  
where  

summed. Tbe coefficients and ~JX? related to each other by e- 

quation (1.39) so that 

w = kv , (a  at 1, 2) , f3 = 3, 4) and the repeated indices are not 

n 

$ *  
vith 8 similar equation for 

U i t h  the boundary surface z - 0 being free froan tractions and 

couples we must have t = m - 0 . Thus through (l.lO), (1.11) and the 
e 4  

fact that u1 - cp2 - (pj = 0 we get 

which must be satisfied at z = 0 for all y and t 'Ibe positive 

directions of surface tractions, couple and the exterlor normal a m  

shown in Figure 2.2. 
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I -  

! .  

Basic solution - 
The solution of 8 reflection problem consists or determining kbe 

amplitudes and directions of the reflected waves when a known vave is 

incident on the boundary. 

conditions (2.3), (2.4) and (2.5) together w i t h  equation (2.2)  and a 

similar equation for Bq todeterninethethreeamplitudes a 

and A i n b n n s o f  a . 

The potentials (2.1) are used in the boundary 

2 ’ A3x 

4x 1 
The potentials (2.1) satis0 the boundary condition (2.3) a t  z = 0 

if 

and 

= *4 w = w  
1 3 

k v  = k v  k v  = k v  
1 3 y  12y 3 3Y 4 4Y 

2 2 2 2  
halls1 + ( ~ w K )  a k2? + ha k + ( 2 p t ~ )  a2klv2z 

1 1 l z  2 1  

Since the incident wave is in tfrc y,z-plane v = 0 and (2.8) yield8 Ix 

V - v  - v  = o  4x 21. 3x 

showing that all the waves 

t ion (2.6) s t a t e s  that su 

w i l l  allow us to determine 

for a given incident angle 

we can w r i t e  (2.7) a8 

l ie in a y,z-plane as assunrd earUer. 

the frequencies are equal and equation (2.7) 

the angles of reflection of the various waves 

containedin v . U s i n g t b e r e l a t i o n w = k v  

Equa- 

lY 
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V 
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(2 .lo) 

where c 

front along the free surface. 

writ ten 

has a sinple physical meaning, m e l y  the speed of the wave- 

~n terms of the angles, (2.10) nay be 

sharing e = e . 
2 1  

Equation (2.3) is one of the three needed to determine the qmpli- 

and A4d’al . tude ratios a /a The other tvo boundary 

conditions (2.4) and (2.5) give the two additional equatioas needed. 

three equations BO obtained are 

2 1 ’ A3x/al  
The 

V 
2 42 - ( 2 p t - K ) v  - x = O  

3x 4x 

( 2 W ) V  v 8 + ( 2 W K ) V  v a 
lyh1 2y 22 2 

2 2  
2 

2 
V 

4Y V 

2 
0 2 2  a: 2 -I& - 42, 

V 

(2.14) 
2w 

2 
v 4x 32 4y =4J v 4 v p  - 2) - c ][v (1 - 2) - A 4 4  

w4 w 3x 
3 



and 
%2 = -a 1 

I n  the special case of 

the  other two reduce t o  a sys i em of ~ L G ~ g c z c ~ * ~  :~!tic??s f n r  T.he deter- 

mination of A and A * Tze deterninant of the coeff ic ients  is 

nonzero, hence A - A - 0 . 'This is similar to the c la s s i ca l  case 

i n  that an incident wave n o m 1  to tne surface results in a r e f l e c t e d  

= 0 equation (2.12) reduces to  

3x 4x 

3x 4x 

wave of the  same type normal t o  the surface with a phase change of 180 0 . 
2 For v 4 0 w e  divide equations (2.12) and (2.13) by v and use 

lY lY 
(2.14) to eliminate A . Tne solution f o r  A 4 9 a l  is 3x 
found to  be 

x ( - [ A  + ( & ~ C + K )  t a n  2 e p ~ + + ~ )  tan 2 e& - p - ( ~ + K ) Q ,  2 tan6 tan6 -Q 2 
3 4 2  

2 2  
taneh 

3 

2 2  1 + ( ~ H K )  (Ql-l) tanel tan6 1- l  
+ (PQ1+Q3) tane 4 

and 
I 

*4x - 
- 2 ( 2 , ~ ) [ h  + ( A + ~ c ~ + K )  &tail 2 e I t ~ m 8 ~  

a 1 1 

x { - [A  i ( h t - 2 ~ ~ )  t an  2 e ~[(WK) tan 2 O4 - p -  ( W K )  Q, 2 tan6 t-a116~ 
1 3 

(2.16) 

where ye have writ ten w for  the common value of w = w and  
1 3-4 

l -  
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l -  
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I -  

i -  

2 
0 2 -1 

2w 
2 2 a: 2 2  * i ! V 3 ( l  - -1 - e. l[v, ( 1  - 2) - c , ]  
-1 2 4 -  4 U 

2 2  2 

2 2  

2 2  2 

2 2  

2 w  
2 

Q2 
-K -- 

w 
4Y 

w v  

2w 

w % 

The generdl solution for  t n e  amplitude m t i o s  as given above can be trans- 

4 ’  fomed i n t o  d i f fe ren t  forms by us ing  ( 2 . l l )  t o  eliminate 8 anti/or 8 
3 

however, since trlere is nothing to be gained by t h i s  we  turn our atten- 

t ion to scene special  cases. 

Special C~ses - 
* i. A /a = 0 . Considering the  numerator of equation (2.Ib) to 4x 1 

be zero, a t  f irst  glance there appear to  be three values of 

make t h i s  amplitude r a t i o  vanish. 

s t a n t  A is posit ive two values of 8 are complex, thus the only real 

value of 8 

8 vhich 
1 

However, since the <onst i tut ive con- 

1 
is zero which is the case of a grazing incident wave. 

1 
Consider now an  incident wave w i t h  8 = 0, i.e., v P 1 and 

1 w 
v = 0 . Frcm (2.11) we conclude that 8 = 0 but 8 and 8 are 
lz 2 3 4 

nonzero. Then (2.l6) and (2.14), respectively, show that A = 0 and 4x 
A 

a - -a . However, since the  exponentials are the same when 8 = 8 = 0, 

- 0 . Quat ion  (2.13) is ident ical ly  sa t i s f i ed  and (2.12) yields 
3x 

2 1 1 2  - -: and the motions cancel each other as i n  the classical case; 
2 1 

hence we m u s t  resort to same fonn of l imit ing process as 

zero to obtain llonzem displacements. 

Cases v. and vi .  

tends to 

For t h i s  analysis see Special 

- -- 
4 ii. e4 = 0 . This is the case of reflected waves at speed v 

paral-hl to the surface. If e4 = 0 then v = sine - 0 and 4z 4 
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V 
1 = cose I - 
4 

1 V 
V 
ly 

from (2 .lo). Then equation (1.35) shows v > v giving cos8 > 1 1 4  1 
and 8 is imaginary. Since our incident wave angle is betveen 

0' 
0 

1 
and 90 and real t h i s  means we cannot have a ref lected graziw wave 

4 .  w i t h  speed v 

iii. 8 = 0 . In this caee 8 will be real if v > v since 
3 1 3 1  

V 
1 

cos9 I - 
3 

1 V 

Two possibi l i t ies  i n  ttis case are respectively &ven by (1.57) and (1.56) 

corresponding to  the inequalit ies 

Hence v > v and 8 is real if (1.57) or (1.58) is satisfied. 3 -  1 1 1 
U s i n g  (2.14) and (2.17) we c a n  mite 

1 

m e  
4 A  

2 
A - Q1G 4x 

3 3x 
(2.18) 

Multiplying the numerator and denaninator of (2.15) by tan6 /tan0 

l e t t i n g  8 = 0 we get a /a = -1 . If we ca r ry  (2.l.6) in to  (2.18) end 

and 3 4 

3 2 1  
let e = o ~ @ t  

3 

A 

a 3r = -2 tane1(2p + K ) ( V  + 
1 

Also through (2.18) i n  t h i s  l imi t  A 4 h 1  = 0 when 8 f 0 . 
these results take the forms 

For 8 - 0 
4 3 
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a 
P -1 2 

1 

- 
a 

4 , cos6 = - 
3 

V V 
1 

3 
- 
a 1 V 4 V 

= 0 , COS$* = - A4x 

1 

where the  angle (3; 

f o r  a set of re f lec ted  grazing waves at s y e d  

is  given by (2.11) . This completes the solut ion 
2 

v 
3 

The angle of incidence and the  anplitude r a t io s  given by (2.19) 
2 

are plot ted against  w f o r  varioiis vaaces of pa,wieters. Tile micro- 

i n e r t i a  j is estimated on the basis of a polycrystall ine Liietal wf;ose 

* Grain s i ze  is approximately 0.0025 inciies. Based on this r p i n  s i z e  the 
- 6 2  

lover limit f o r  j is abou t10  i n .  for one w i n .  For a microvolwne 

o r  lo00 grains we get an average value of j approximately 10 in.  . 
We also assume p to  be the mass density of steel, approximately 

-3 2 

2 -4 
1b.-sec. - in .  . 
It is 'assumed trjat K is small campared to  h and p and that 

A = p . We fur ther  assme that CY , f3 and 7 are smal l  conipared to 

A and p , and i n  par t icular ,  to sknplify the calculations we let 

a! = 8 = y such that tne i n e q d i t y  (1.51) is sa t i s f i ed .  

W i t h  these assumptions we use (2.19) along w i t h  several  d i f fe ren t  

values of the parameter y / j h  . The results are sketched i n  Figures 2.3, 

2.4 and 2.5. The curves in general show that the amplitude r a t i o  

A J P l  increases f o r  increasing y / j h  

that the amplitude r a t i o  for a fixed y / J h  is f i n i t e  for large w and 

becomes more nemtive f o r  decreasing 

of w i n  which case i t  quickly turns to zero. The curve remains 

If K { 0 Figure 2.5 s h m  

w unti l  ye reach the neighborhood 
2 
C 



Figure 2 . 3 .  Bcisent angle 8 vs. frequency w i t h  K I A  = 0.m 
1 

0 

0 
d 

f 

2 Circular Frequency w 
w -+= 

Y - = 3  
Jh 

-2 c 

Figure 2.4. Amplitude 
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c 

bounded f o r  a l l  finite values of the parameter 7 / j h  ; hawever, 88 t h i s  

parameter goes to in f in i ty  the en t i r e  amplitude ratlo curve rnovelt uut 

tuwards inf ini ty .  Physically, however, t h i e  r a t i o  is bounded s ince 

y / h  << 1 and j cannot equal zero since it is a function of grain size. 

For j = 0 the character of our d i f f e ren t i a l  equation changes so that 

no wave solution ex i s t s .  

iv .  8 is compler. In  t h e  previous case we have seen t i l a t  as 

is decreased fram 90 tarards 0 tke angle 8 of the re f lec ted  

wave8 a t  speed v decreases from 90 to 0 faster than 8 . In parti- 

c i i a r  e goes to zero a t  e = 6" > o . AS is decreased below 

t he  c r i t i c a l  angle 8" equation ( 2 . U )  show tbt (v /v 1 case > 1 

and hence cos8 > 1  and 8 is cmphx. Subst i tut ion of 

0 0 
3 

3 
0 0 

3 1 

3 1 1  

1 2 3 1  1 

3 3 

A 

and cos6 into t h e  potent ia l  (2.1) w i t h  p = 3 yields  
3 2 

(2.20) 

( 2  21) 

from which we see that the transverse waves a t  speed v become a dis-  

turbance propagating along the boundary at the speed 
3 

whose amplitude decays erponentiaUy w i t h  distance z i n t o  the &dim. 

This is similar to the c l a s s i c a l  case for an incident shear wave, but 

differs i n  the f a c t  that a p l  is no longer equal to one and AkJ'al 

is no longer zero. Thus 88 8 is decreased beyond e* we have a 

disturbance along the surface, a ref lected longitudinal wave a t  speed 
1 1 

V and angle el , and a set of coupled transverse waves a t  speed v 1 4 
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andangle  6 . With 8 c m p l e x t h e  amplitude ratios a a 4 3 2L and 
are also canplex ind icatbg phase sh i f t s  i n  the reflected waves. 

A t  a first glance one is tempted to c a l l  the exponentially decaying 

surface wave a Rayleigh wave, On c loser  examination, huuever, we see 

that the wave speed var ies  continuously from G = v when 8 "; and 

v = v when 8 = 0 as we decrease e whereas a Rayleigh vaye has a 
3 1 - 

1 1 1 
fixed speed. The incident wave forces the surface disturbance t o  travel 

a t  a specif ied speed. 

An independent approach can also be made by s e t t i n g  a = 0 i n  1 
(2.12) to (2.14). The three homogeneous equations nay possess nonzero 

solutions f o r  a , A and A, i f  the determinant of the coeff ic ients  

is zero. Tils leads t o  a polynomial equation f o r  the deternination of' 

t he  Rayleigh wave apeeds. 

2 3x 4X 

The problem was studied by Suhubi and Eringen 

E23 

v. F i r s t  l imi t ing  case f o r  a zero angle of incidence. We now 

study the problem of re f lec t ion  when the angle of incidence 

t o  zero. From the previous case we know that 8 is complex unless 

tends 

3 
w > w* and (1.p) is satisfied i n  which case 8 is mal and is given 

2 3 - 
. The limiting angle 8 is l i k e w i s e  given by v 3 h  4 by cos8 = 

3 
case = v /V fzwn (2.n) with case = 1 . The angle e is equal to 

and tends to zero also.  Thus the general solut ion reduces to zero 
4 4 1  3 1 2 

motion as 8 goes t o  zero. 
1 

To obtain a nonzero solution we present b r i e f l y  an analysis s imi la r  

to  the one given by Goodier and Bishop [ 4 ]  f o r  the c l a s s i ca l  case. 

bas ic  procedure is to expand the angle re la t ions  (2.11) i n  powers of 

The 

8 (TaylOr'8 series about 8 = 0) and Similarly f o r  the! general solut ion 

given by (2.15) and (2.16). A f t e r v a r d s  the product a 8 is asaumed 

to remain f i n i t e  aa 8 tends to  zero. The resulting solut ion is a 

nonzero motion. 

t e n t i a l  

1 1 

11 

1 
Carrying out  t h i s  process we find for the scalar po- 
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- tj* 9 
G = G + u = -ale12(g + ik z)  exp[ik (y-v t)] + o(s;) 

1 2  1 1 1  

where 

2 
1 1/2 

V 

(7 - 1) 
v4 

35 

(2.23j 

If we allow 6 to  go t o  zero and a to tend to i n f in i ty  such 1 1 
t h a t  -2a 9 i a = constant then equation (2.23) w i l l  yield a nonzero 

1 1  0 
motion of the ydium.  The f i r s t  term i n  (2.23) is constant and could 

represent the incident wave; however, t i e  second term which represents 

the-reflected longitudinal wave is proportional t o  the distance z . 
This is physically unacceptable because it becomes unbounded for in- 

creasing z . Also, as 8 tends to zem the incident wave and the 

reflected wave of the same type become indistinguishable from each other 

physically. 

1 

Even though this theory has its f l a w  it does predict  a 

ref lected shear wave coupled w i t h  a microrotational wave a t  speed v 4 -  
vi.  Second limiting process for a zero angle of incidence. 

In the case where 8 

physically meaningpul rrolution following a method si_milnr to the one 

used by Roerler [7] for the clsseical  case. 

tanrls to zero it may be possible to obtain a 
1 

The barric equations (2.12) and (2.13) a m  solved for the ratios 
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where (2.14) has again been wed to elininate A . A s  8 tends to 

zero the first r a t i o  has a finite l i m i t  different from zero vhlle the 
3x 1 

second one tends to zero. Experinentally the measurable quantity for 

1 the longitudinal asplacement waves is a + a but neither a nor a 

alone since a t  8 = 0 the waves are indistinguishable. We then conclude 

that A is finite and given by equation (2.27) since we & S 6 W  the 

physically mbasurable quantity a + al to be fini- .  For finite A 

2 1  2 

1 

4x 

4x 2 
(2.26) show that a - a must be i n f i n i t e .  Hence if a + a is 2 1  1 2  - 
f in i t e  and a - a is i n f i n i t e  they must be of opposite signs and both 

infinite in magnitude. 
2 1  

The potentials (2.1) for the dlsphceclents then 

have the values 

- - 
3 - u + u = (a + a2) exp[ikl(y - vlt) l  1 2  1 

and 

4 = A4x exp[ik 4 (y  cog0 4 + z sine4 - v4t)] (2 028) 

is given by (2.11) as 04 3 
where A ‘  is given by (2.25) and the angle 

4x 

4 
cos0 = - 

1 

V 

4 V 



General 'pechnology Corporation 

- -  
8 .  

1 

This solut ion satisfies the wave equations and appropriate boundary 

conc i i i iw  aid has been r.rrified e.,xprL~r?+nl$v frlr rlassical e l m t i c i t y  

[ 93. In the present case it predicts a s e t  of coupled waves a t  speed 

and angle 8 in addition to  the longitudinal wave a t  speed v 

along the surface. A s  pointed out previously, under cer ta in  conditions 

we may h v e  re f lec ted  a set of coupled waves a t  speed v 

8 also. 

v4 4 1 

and angle 
3 

3 

EEEE2 
I n  summarizing t h e  analysis of t h i s  chapter, we have seen t h a t  an 

Incident longitudinal disi;lac-ntweve a t  a p b n e  stmss free boundary, 

i n  general, r e f l e c t s  as a wave of the same type and two sets of coupled 

transverse waves. &e set of codpled waves t ravels 'a t  speed v i n  the 

dime t ion  

y,+ . For noma1 incidence 

speed v and v vanish and the only wave reflected normal t o  the 

surface is a wave of the same type as t h e  incident one. 

incidence is decreased from 90 

(2.11), (2.14), (2.15) and (2.l6). 

3 
and the other set  travels a t  screed v i n  tile direct ion 4 

0 (el = 90 ) it w a 6  shown that the waves at 
5 

3 .  4 
As the angle of 

0 
the general solut ion is given by equations -- 

* 
The general solut ion prevails u n t i l  8 - is reached a t  which 1 - 

time 8 = 0 , 0 , and A = 0 . A t  this angle of incidence (2 .19)  

shows that we have a surface motion t ravel ing a t  speed v and a re- 
3 4x 

3 
flectedlongitudinalwaveatspeed v andangle 8 - = e* . AS 1 2 - %  1 

0 
8, I s  decressed f'rm e: t o  0 the angle 8, become6 complex. The 

A 2 

interpretation here is that we have re f lec ted  i n t o  the medium 

dins1 wave a t  angle 8 and a set of coupled transverse waves 
1 

a longitu- 

a t  speed 

as well as a s e t  of' coupled surface wave8 decaying e4 and angle v4 
with depth i n t o  the  medium and traveling a t  a speed 

Fina l ly  as 

c w h e r e  v > c > v 3 -  - 1' 
tends to zero we have t h e  l imit ing solut ion of case v i .  
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CrnPTER 3 

REFLECTION OF CoUPLED "SVERSE SHEAR AMD 

MICROROTkTIONAL WhVES 

Formulation 

In this chapter we study t h e  ref lect ion of a set of coupled trans- 

The presentation v4 

v4 

verse shear and microrotational waves a t  speed 

pmille2.s +&at, of Chapter 2 fo r  the longitudinal wave. 

t o  be i n  the direc- 

t h e  boundary conditions will be s a t i s f i e d  if  w e  have ref lected 

Assuming the set of coupled waves a t  speed 

t ion  y1 
a longitudinal displacement wave a t  speed v and direction y2 and the 1 
two sets of coupled waves a t  speeds v and v as shown in Figure 3.1 .  

For the incident waves w e  have the potent ia ls  
3 4 

and for the ref lected waves 

where E 3,4 and not summed. The coefficien'.s of % % and 
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are =lated to the respective 

to (2 .2) .  Assuming A known we determine the ampiimcies 

and A 

coefficient through equatiomsimilar 

n 
"2 ' '3x Ix 

4x 
The potentials (3.1) and (3.2) must satisfy the three conditions 

(2.3)  to (2 .5)  for a l l  y and t and z = 0 . These three equations 

enable us 

and A 4 d A h  as w e l l  88 the angles of reflection. 

to solve for the three mplitude ratios 

Basic Solution - 
Substitution o r  the potentials (3.1) and ( 3 . 2 )  into the boundary 

conditiors (2.3) to (2.5) shows that tncy are sat i s f ied  if 

V V 
1 3 case = -  COS^ , case = - COS@ 

1 
4 1 v4 2 v  e4 = el ? 

and 

A 
3x (2pK)k2 v v - 2 2 a2 

+ (2w)v2zlkl  A- - 3 3Y 32 Ah Ix 

(3.3) 

and 



Excluding the special case of v = 0 which w i l l  be studied later, 
ly 

t 2 ~  t b e  equations (3.4) to (3.6) y i e l d  for the amplitude ratios 

w h e r e  < i e  given by (2.17) and 
1 

2 2  

w lY w v  
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The$e equations give the amplitudes of the various wave potent ia ls  

88 Arnctions of tfre incident wave amplitude and direction (8 ) . 
we lack defini t ive knowledge of the const i tut ive constants further dis- 

cussion of the general solution is uninformative and we turn our a t t en -  

Since 1 

t ion  to sane special cases. 

Special Cases - 
In t h i s  section we consider the spec ia l  cases when an amplitude or 

an an& of the reflected waves is zero. In par t icular ,  we consider the  
0 = cos6 = 0 (el = 90 ) and end t h i s  section with a discussion 

1 
of grazing incident waves ( e  = 0). 

1 
Since < is never 1 the numerator of (3.7) a2’Alx - * 

will equal zero if any one of the following thm~ relations are satisfied 

The case 8 2 0 is conaidered a t  the end of t h i s  sect ion (the last case). 
1 

If equation ( 3 . u )  IS s a t i s f i e d  then e = o and (3.3) gives for e 
2 3 1 ’  

the an@ the incident wave makm w i t h  the surface, 

Using ai13 result along w i t h  equations (3.3) we can reduce the general 

~oiut1011 to 
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2 
20 

2 

2 2 

3 2  
3 2 wo 2 0 

A V - 3x x - 2 ( ( p + K ) ( ~  - 1) - p + K V - [Vb(l--)- 
W 

2w 
*lx 

Thus,-if the incident waves are at  an angle 8 given by equation 
1 

( 3 . 1 2 )  then we have no wave motion associated with ih potent ia l  

the reflected waves at speed v are along the surface, and the coupled 

waves reflected into the media travel a t  the same speed and angle with 

2 '  

3 

the surface as the incictent wdves. 

War, if neither 8 nor 8 is zero, the amplitude a can sti l l  1 3 2 
vanish for a value of 8 satisfying (3.11) Rearranging this equation 

1 3 -  
we can write 

2 2 

(3.14) 
2 -1 2 w 0  2 2 &o -1 

COB e = (2p.t~) (p + K - K v - [c4 - v,+(1 - ~ 1 1  1 
. w  

4 2  
W 

1 

which yields a nonzero value of €I1 for which a vanishes. 
2 

We note that (3.8) shows that A also vanishes w b n  equation 
3x 

(3 .U)  is sat i s f ied .  Thus for the angle given by (3.14) the eolu- 
3 

t lon reduces to 

Eence for W e  value of 8 

mvcs of the same Qpe making the 8- angle w i t h  the surface a8 the 

incident waree. 

we simply have reflected a set of coupled 
1 

from the t w o  extreme values of el (0" and mol 
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\ - -  . the only remaining special case is when 6 2 = 0 .  

V. 

I. - 

b 
COS e = - 

1 
1 V 

(3.16) 

I S  k 8 S  v4 as given by equation (3.7)  

than v1 . However, the angle 8 is complex for values of the frequency 

between w and w* (see (1.581) since v is greater than v and 
C 3 1 

cos6 f as given by ( 3 . 3 ) .  The amplitude ratios, which do not 

This is a real angle since 

- 3  

2. 

3 
reduce greatly, are given by the general solution and are seen to be 

complex since 9 is complex. 
3 

Thus for an incident set of waves at  the tingle 8 given by (3.16) 
1 

the reflected waves along the surface consist of two superposed sets. 

One set travels at speed c = v 

This set corresponds to the-potentials # and 5 . 
wave a t  speed v corresponding to potential cQ , has no decay factor, 

although any f’urthcrr decrease of‘ 8 

a t  speed c , less than v . There will also be a set of reflected 

waves of the 8ame trpe as the incident waves. 

a phase-shift since the amplitude ratio A 

and decays with depth into the medium. 

The other surface 
1 

1 ’  L 

would result in a decaying wave 
1 

1 
These waves w i l l  undergo 

ViU be complex. 4JAlx 

1 lii. 8 .I 90° . Since we divided our equations by v = cos0 
1 ly 

earlier, we aov consider separately the situation if 

Then v 3 -1 and (3.3) shows that v = v = v L. 0 and hence 

V = v = v = 1 . Using these relations in (3 .4) ,  (3.5) and (3 .6 )  

v = 0 (el 90°). lY 
lz 5 3Y 4Y 

22 3z 42 
we obtain three equations which yield amplitude ratios 

S O  
2 a - 
Ix A 

(3.17) 
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2 
2w 

0 c2, -l f (  *K)$ A 3x % 2  - - [v4(l  - --) - 
Ix 4 W 

- = 
A 

2 
2w + K W 2 2  [V (1 - 2) 0 - C 4 1  2 -1 1 
W 

0 4  

(3.17) 

where 

Hence, when the waves lncid,ent normal to the boundary there are 

two sets of waves reflected n o d  to the boundary, one at  speed v and 

one at  speed Y . This is quite different fram the classical case 

where an incident shear wave normal to the boundary results in a re- 

flected shear vave (l&* out of phase with the incident wave) noma1 

to the boundary. 

set the constitutive caf f ic ienta  

eff ic ients  zero v vanishes and v reduces to the classical shear 

wave velocity. 

different solutions for A 

remembering tbst equation ( 3 . 6 )  canes frm the couple etress boundary 

4 

3 

For our solution to reduce to tbe clsrrsical case we 

K - a = p - I =  0 . With these co- 

3 4 
A t  U s  point it appearer that (3.5) and (3 .6 )  y i e l d  two 

. This difficulty can be resolved by 4 d A h  
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condition (2.5) which vanishes identically if a I) f3 I y P 0 . 
equation (3.6) is nonexistent and the solution does indeed reciuce: 

c lass ica l  one. 

Thus 

*&e 

iv. el = o . An analysis similar to case v i  of Chapter 1 shows 

is finite and we are to  have a and A finite 
4% 2 3x 

that i f  Ah + A 

3 
then Akx - A m u s t  be inf ini te .  However, both angles 8 and 8 

8re cmplex and we would have the surface shear wave represented by A 

+ A 

by a2 
c = Vk 

Ix 2 

Ix 
and the t w o  exponentially decaying surface motions repmsented 

Since all of these waves travel a t  the 8- speed 
4x 

A3x . 
it appeans that separation of these e f fec ts  experimentally uould 

be e x t w n t l y  di f f icu l t .  

see a transverse suriace wave a t  speed v represented by A + A . 
Hence i t i s  postulated tha t  we would indeed 

4 Ix 4x 

Summarizing, we'see that i n  general an incident set  of mupled waves 

a t  speed v results i n  the reflection of two sets of coupled waves, 

and the other a t  speed v and a longitudinal one set  a t  speed 
displacement wave a t  speed v , a s a m h g  o > w . If w < w the 

1 C C 

set of reflected waves a t  a p e d  v degenerates to  a vibration of the 
3 

medium and we have essent ia l ly  the classical  cme. 

4 

v4 3 '  

0 
If w > w and 8 = 90 we have two sets of coupled waves reflected 

C 1 
is decreased t k  reflected waves move 

equals the crit ical .  value given by 
As 

normel to the boundary. 

toward tbe surface and when 8 

(3.12) e3 = 0 , the langitudinal vave vanishes, the set of waves at 

speed v becomes parallel to the surface, and reflected inta the medium , 

A8 the set of coupled waves a t  speed v similar to  tbe incident wave8 

and in phase w i t h  them. As 8 is decreased beyond this value the 

surface wares associated with 

mcdlum, and reflected into the mxiium we have a longftudinal wave a t  

1 

3 
4 

1 
decay with depth into the 3 and 5 

6peed v 

speed v 

and a set of coupled waves similar to the incident waves a t  

The amplitude ratios becane complex since 8 is complex 
1 

4 -  3 
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Indicating that the reflected waves have a phase shift. With Further 

decrease of 8 we reach another value such that e = w . -The oniy 

waves mr lec ted  in to  the m e d i u m  nov are the coupled waves of the same 

type a8 the incident waves. 

1 2 

Further decrease of 8 malres 8 complex as w e l l  as 8 , hence 
1 2 3 

the waves associated with and % all t rave l  a t  speed c and 

decay w i t h  depth in to  the medium. then show 

is the complex conjugate of the denornine that the numerator of A 

and the waves ref lected into the nedium ator. a his mew IA  

2+J 
Equations (3.9) and (3.10) 3 

d A J X  

4 A X l =  
are of the same type and magnitude a8 the incident waves but w i t h  a 

along v4 When 8 = 0 we predict  a set of cou2led waves a t  speed 

w i t h  the expnen t i a l ly  decaying surface motion associated with the 
1 

. Experimentally these suprposed motions 2 ’ 1 L j a n d 5  potent ia ls  3 

appear to  be inseparable. 

given by (3.14) the amplitude a 
2 

vanishes. The numerator of (3.9) s e t  equal to zero may give possible 

values of 8 such that A would equal zero. In  order to make an 

analysis of this case meaningful we m u s t  wait f o r  an e-xperimental deter- 

mination of the consti tutive coefficients involved. 

A t  Ehe value of the angle 

1 4 X  

t 
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c m m  4 

REPIXTION OF A LQNGI'IVDINAL 

M IC ROROTATIONAL WAVE 

Fo mula ti on 

This chapter is devoted t o  the study of the ref lect ion of a longi- 

tudinalmicrorotational wave a t  speed v 

a ha l f  space. We r eca l l  that this wave has its microrotation vector 

pa ra l l e l  t o  the direction of propagation. Since this wave degenerates 

into a distance decaying vibration f o r  w < w the inciaent wave and 

its ref lect ions disappear. Thus the analysis nust be confined to the 

a t  a stress free surface of 
2 

C 

range w > w  . 
C 

A t  first glance it appears that an incident longituciinal microrota- 

t i o a  wave may r e f l e c t  only another miye of the sane 'type a t  the same 

angle. This would be sinilar t o  the ref lect ion of horizontally polarized 

waves in the classical case. Ihrfortunately, this ane r e f l e c b d  wave 

satisfies Go boundary conditions only. 

An investigation show that horizontally polarized transverse dis- 

placement waves with par t i c l e  motions only i n  the x-direction w i l l  

praride a set of reflected wave8 consistznt with the boundary conditions. 

Coupled with each tranrivense displacement wave there ie a traneverse 

microrotational wave whoee microrotation vector is perpendicular to the 

direct ion of propagation and in  this case the x axis also. 

of re f lec t ion  ie self-coneistent without the necessity of having a re- 

f lec ted  longitudinal displacement wave at  speed v - Hence when we 

discuss longitudinrnl waves we mean the 1ongitudina.l microrotation wave 

a t  speed v and when we mention coupled waves we mean the transverse 

This picture  

1 

2 
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* .  microrotation wave coupled w i t h  the transverse displacement wave at speed 

v and a similar set a t  speed v 4 '  3 
I n  order that the transverse dieplac-nt waves have par t ic le  motion 

In the x-direction only U must equal zero. Moreover ve have y & = 0 

or v A + v A = 0 It follow that  the vector potent ia l  must have 

the form 

X 

Y Y  z =  

V 

Thus we see that the potent ia l  actually has only one coeff ic ient  

A . Also it was s h m  that the coefficient 2 of the potent ia l  p 
is given interas of by 
Y 

Since both 

parallel to  

b for the 2 

y and & l i e  i n  the y,z plane w e  see that will be 

the x-axis. Thus there are three unknown coefficients:  

ref lected longitudinal microrotational wave, A for the - 
3Y 

coupled waves a t  speed v , and A for the coupled waves at speed v 3 4Y 4 '  
We are therefore led to assuue that an incident longitudinal micro- 

rotation wave a t  a pLane stress-free boundary w i l l  result in ref lected 

waves a6 shown i n  Figure 4.1. The incident and ref lected longitudinal 

respectively. O m  set of coupled y1 " n d % p  
waves are represented by 

transverse waves is traveling a t  speed v i n  the direct ion 5 -  
in the direction s. 'Ibis 
3 

the other set ie trave- a t  speed v 4 
situation i. canfixmed w i t h  tbe satisfaction of boundary conditions, 

Tbe potentials representing the waves in this problem are now 

explicitly stated. The potent ia l  for the incident longitudinal wave is 

. 
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- 
b expfik ( v  y + vaz - v,t)] (4.3) 

q2 2 2 a  

The potentials for the transverse displacement and microrotation waves 

a t  speed v are respectively given by 
3 

W i t h  the potentials 88 given above the three boundafy conditions 

t P m = 0 for the free surface z = 0 are satisfied identically. 

The mmaining three conditions are: 

t = 
32 

33 31 

. 
, 



1.- . 

Basic - Solution 

A6 in the previou8 two problems we vish to determine the directions 

and amplitudes of the reflected waves when a known wave is incident on 

the boundary z = 0 at a knam angle. Substituting the potentials into 

the boundary conditions (4.8) to (4.10), we find that they 

fied if 

a l l  sat i s -  

c 

c - 

3 coso = -  COS^ = - 
V 

3 
2 

V 

3 V 1 c 

V v4 4  COS^ = - case = - 
4 V 1 C 2 

and 

2 2 
0 2  0 

2w w 
w 

K b2 + i ( ( p t K )  7 + K -[v ( I - )  - 
V w 3  2 w 

3 2 V 

2w2 2 

w 4  2 

w 
w 0 2  0 + I [ ( p t K ) y +  K 3 v  (I-) - = - u  

w v4 

( 4 . U  

2 
2 w  

2 2  0 2 -1 
2 

(€5 + y)k v v b - i(p 5 - 7)k v o [V (1-)-c 1 
32 

V 2 
A 

2 a l y 2  V 3 3 2 0 3  w2 4 3Y 

2 

- i ( B  % - 2 2  = -(B+Y)k 2 v v b (4.13) 2 l z l y 1  
w 42 V 
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2 
2w 

- i (p+y)k v W 2 2  [V (l--)-C 0 2 ) -1* = - k 2 [ ( - + y ) v  2 2 2  +CIV Ib (4.14) 
4 4y 0 4 2 4 h4y 12 lY 1 w 

w h e r e  we wrote kv = w . Again c represents the speed of the wave Front 

along the surface z = 0 . 
Excluding the case v = 0 , studied later, the solution of the 

three equations (4.l2), (4.13) and (4.14) for the azpl i tude  ra t ios  is 
Ir 
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c 

c - 

2 

2 2 
2 2 w  0 2  2 wo x ( ( p + K ) [ V 4 ( 1 - ~ ) - C q J  + K v 4 2  -1 

w W 

(4.18) 

It can be observed that in  the general case when a l l  the angles are 

real and the waves are reflected into the medium as in Figure 4.1 the 

and A43/bl &we pure ratio b /b is real and the two ratios A 

imaginary. physically, this means that the reflected longitudinal wave 

(b2) w i l l  be in  phase with the incident wave (b  ) or out of phase by 

180 depending upon whether the ra t io  is positive or negative. 

the reflected transverse waves (A 

* dent wave (b ) by 90 aepending upon the ratios being either positive 

or negative. 

3Pl 2 1  

1 
0 Similarly, 

and A ) w i l l  lead or lag the inci-  
3Y 4Y 0 

1 
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Special Casee 

ncxn (4.11) we can see that 6 is never zero since v < v . If 
4 4 2  

the inequality (1.61) is satisfied ( th is  should be satisfied for the 

majority of materials as j is small) then v < v and the a,ngle 8 

is never zero either. 

r a t io s  being zero and end the section by considering the case of 

tending to zero. 

3 3 2  
We consider the poss ib i l i t i e s  of the auplitude 

1 e 

0 
i. €3,. = 90 . Then v cos0 = 0 and v f -1, i.e., we 1Y 1 12 

have an incident wave normal to the bounckry. From (4.11) we see that 

v = v = v = 0 and hence v = v = v = 1 . 'Substi tution 
2Y 3Y 4Y 22 32 42 
of these values into equations (4.12), (4.13) and (4.14) Wiu. yie ld  

b = -b and two linear sirmiltaneous homogeneous equations for A 
2 1 3Y 

and A . If w is not infinite,  then v # v and the determinant 
4Y 3 4  

of the-coefficients of these equations is nonzero. nus we conclucie that 

A - A  = O  
3Y 4Y 

b2 E -b 
1 (4.19) 

- 
and an incident longitudinal microrotation wave normal to the surface 

reflects a similar type wave w i t h  a phase shift of 180' also normal t o  

the surface. . 

ii. Amplitude r a t i o  A /b = 0 . H e r e  we wish to determine the 
3Y 1 

angle 8 such that the amplitude r a t i o  A vanishes. As usual, 1 
setting the numerator (of (4.16)) equal to  zero we find tha t  e must 

satisf 'y 
1 

2 
2 2 2 wo -1 + K[C 4 4 4 2  -V +V -1) (4.20) 

w 
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t i ve  and 8 is complex. Physically, t h i s  shows tha t  there 16 no value 

of el between 0' and 90" that w i l l  make the amplitude r a t i o  A 

vanish. 

1 

3Pl 

iii. Amplitude r a t i o  A /b = 0 . In a manner similar to that 
4Y 1 

above, we consider the numerator of equation (4.17) to obtain 

-1 = - a ( a + p  + 7) tan $1 

Thus ve again conclude that there is  no real value for  the angle between 

0 and 90 such that the amplltuae r a t io  A b vanishes. 
0 0 

4 4  1 
iv. 8 = 0 . We now consider the case of a gazing inciLent 1 

longitudinal microrotation wave. Lett ing = 0 i n  the general solution 

we see th8t the angles and e are given by (4.11) as % ' 4 

... 4 , cose = - 3 

2 2 

V V 

e2 * 0 , cose = - 4 v  3 v  

In general v > v > v and the angles are a l l  

(4.16) and (4.17) reduce to 
2 3 4  

1 
b -b 
2 

A = A  = o  
3s 4Y 

which again reduces to zero motion of the medium 

s t i t u t i o n  of (4.23) into the potentials (4.2) to 

the need of a limiting analysis once more as the 

to zero. 

(4.22) 

m,. Equations (4.15), 

as can be seen by sub- 

(4.7). nus we real ize  

incidentangle  6 tends 
1 



57 

Tn nrcier to use a l i m i t i n g  procedure we go bsck to the three equations 

(4.12), (4.13) and ( 4 . 1 4 ) t n e t h e  amplitude ratios A7y/(bl + b ) and 
2 

2 
A 2 w  

2 b +b 
1 2  2 w 

w2 $1 - -) c) - c4] 2 -1 A 3y i[K(P+Y)k4 

2 2 

0 2 -1 (4  24) + ctk2(11+K) -1 + - [v4(1 - - ckl 1 
2 w  

20 
2 w 2 wo 2 

V w 4 

2 
A 2w 

A -  = 
1 2  

4Y v3Y 2 2 0 
i(K(c~+7)k - w [v (1 - -) - 

L 3 v 2  0 3 0 
b +b 

c 

2 
2 2  0 2 -1 0 0 2  0 

2 w  
2 

2 a 3  2 
3 

w 2w2 
A 5 ( p + y ) v  k 0 [v ( 1 - 2 ) - c 4 ]  ((WK) - +  K -[v (l--)-c;]-’1 

w w V 
4 y 4 0  4 

where we have set 8 = 0 
1 

= -, we predict that 
2 - bl 

Thus at 9 = 0 ,  b + b finite but b 
1 1 2  

there exists two sets of coupled transverse waves along with the longitu- 

d ina l  wave. One s e t  of coupled waves is a t  speed v and angle 6 and 
3 3 
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8.' 

(4.22). The amplitude of the grazing longitudinal wave is b + b m u  

the corresponding amplitudes of the two s e t s  of coupled waves reflected 
1 2  

into the medium are given by (4.24) and (4.23). Fram these the potentials,  

aisplacements, and f b f i l l y  the stresees can be obtained. 

sunaaary 
In sunnanrizing the ref lect ion of a longitudinal microrotational wave 

we first note that the problem exisis only i f  w > w . If o < w the 

incident wave degenerates into a vibratory motion of the medium and we 
C C 

have no ref lect ion problem. 

When the incident vave strikes normal to the boundary there is re- 

f lec ted  a wave of the same type also normal t o  the boundary but with a 

180" phase shift from the incident wave. As the inciaent angle is 
0 0 

decreased from 90 (normal incidence) t o  0 (grazing incidence) we see 

that the general solution prevails and there are reflected two sets of 

coupled transverse waves a t  speeds v and v respectively, along &th 

a wave of the incident type. The two sets of coupled waves suffer phase 

shifts with respect t o  the incident wave. 

wave may or may not have a 180 phase shift depending on whether the 

amplitude r a t i o  b2/bl is negative o r  posit ive,  respectively. 

3 4 

The ref lected longitudinal 
0 

We concluded the analysis of this chapter by considering the ref lec-  

t ion  of a grazing longitudinal microrotation wave. By using a l i m i t  analy- 

sis similar to  thst of Roesler we predicted two seta of coupled transverse 

waves at angles 8 and 8 given by (4.22). In addition to these we ' 

have a resu l tan t  longitudinal wave which is the ~um of the incident and 

re f lec ted  longitudinel waves. 

3 4 
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CONCLUDING REMARKS 

This a r t i c l e  hss presented the basic theory of wave propagation 

and three typical reflection problems f o r  a micropolar e l a s t i c  sol id ,  

These results are all steady-state solutions of pzaW waves ref lect ing 

a t  an infinite plane stress-free boundary, 

is such that f o r  a given incident wave we know which waves are ref lected,  

The extent of the solutions 

the h w s  of reflection, and the amplitude ra t ios  of the potentials 

representing them. 

A knovledge of the magnitudes of the constitutive coeffscients 

would make this analysis more meaningful. There is much experimental 

work to be done by future workers to determine these material constants. 

The experimental work will be d i f f i cu l t  as these effects  are small  fo r  

the c lass ica l  problems and only become observable fo r  waves with fre- 

quencies around one megacycle and above, 

perimental work done with e l a s t i c  waves of such frequency, except possibly 

in crystals.  An e f f o r t  to correlate this theory with vaves i n  crystals  

appears to be worthwhile, 

To date there has been no ex- 

The determination of how these waves o r  vibrations are established 

in the medium, the transient problem, has been completely neglected. 

Again, tbrr is much work yet  to be done before full understaading of 

these problems is achieved, 

O t h e r  problems along these lines can now be caanpleted. O f  particular 

interest is the case of reflection and refraction at  an interface between 

two different madia. Another problem that is amenable to  solution is 

that of the reflection from a fixed (u m Y .: w I: 0 , etc.) boundary. 

Work in this area is expected t o  s t a r t  In the near future. 
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c b h - ~ -  +a present anlutions i n  the micropolar wave theory only 

scratch the surface and much rernahs to be done on other theoretical 

problem, e .g . ,  propagation of waves In f i n i t e  bodies, init ial  Value 

problems, diffraction theory and vibration problems. 

. 
c 
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